Mac本地RAG文档问答——Llama2 & ChatGLM3(量化版) & Ollama过去文档检索的基本技术框架,中间每一步都有相当的技术复杂度,过去只有大厂在有巨大需求的场景去实现这样的能力。但是LLM的出现,让文档检索这件事情的门槛骤然降低,用向量数据库就可以轻松构建自己的文档检索系统,结合LLM的对话生成能力,真正实现文档问答的能力。
面向开发者的提示工程之前写过《面向使用者的提示工程》,主要是面向普通用户,在日常使用大语言模型聊天或对话的时候应该如何书写提示词,来改善大模型输出的效果。而本篇主要是面向开发者,介绍在开发 RAG 类基于大模型的应用时应该如何优化和改善提示词,针对特定任务构造能充分发挥大模型能力的 Prompt 的技巧